79 research outputs found

    Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging

    Get PDF
    We present a new class of ultrasound molecular imaging agents that extend upon the design of micromotors that are designed to move through fluids by catalyzing hydrogen peroxide (H_2O_2) and propelling forward by escaping oxygen microbubbles. Micromotor converters require 62 mm of H_2O_2 to move – 1000-fold higher than is expected in vivo. Here, we aim to prove that ultrasound can detect the expelled microbubbles, to determine the minimum H_2O_2 concentration needed for microbubble detection, explore alternate designs to detect the H_2O_2 produced by activated neutrophils and perform preliminary in vivo testing. Oxygen microbubbles were detected by ultrasound at 2.5 mm H_2O_2. Best results were achieved with a 400–500 nm spherical design with alternating surface coatings of catalase and PSS over a silica core. The lowest detection limit of 10–100 μm was achieved when assays were done in plasma. Using this design, we detected the H2O2 produced by freshly isolated PMA-activated neutrophils allowing their distinction from naïve neutrophils. Finally, we were also able to show that direct injection of these nanospheres into an abscess in vivo enhanced ultrasound signal only when they contained catalase, and only when injected into an abscess, likely because of the elevated levels of H_2O_2 produced by inflammatory mediators

    Characterization of indeterminate breast lesions on B-mode ultrasound using automated machine learning models

    Get PDF
    Purpose: While mammography has excellent sensitivity for the detection of breast lesions, its specificity is limited. Adjunct screening with ultrasound may partially alleviate this issue, but also increases false positives, resulting in unnecessary biopsies. This study investigated the use of Google AutoML Vision (Mountain View, CA), a commercially available machine learning service, to both identify and characterize indeterminate breast lesions on ultrasound. Methods: B-mode images from 253 independent cases of indeterminate breast lesions scheduled for core biopsy were used for model creation and validation. The performances of two sub-models from AutoML Vision, the image classification model and object detection model were evaluated, while also investigating training strategies to enhance model performances. Pathology from the patient’s biopsy were used as a reference standard. Results: The image classification models trained under different conditions demonstrated areas under the precision recall curve (AUC) ranging from 0.85 to 0.96 during internal validation. Once deployed, the model with highest internal performance demonstrated a sensitivity of 100% (95% confidence interval (CI) of 73.5-100%), specificity of 83.3% (CI=51.6-97.9%), positive predictive value (PPV) of 85.7% (CI=62.9-95.5%), and negative predictive value (NPV) of 100% (CI non-evaluable) in an independent dataset. The object detection model demonstrated lower performance internally during development (AUC=0.67) and during prediction in the independent dataset (sensitivity=75.0% (CI=42.8-94.5), specificity=80.0% (CI=51.9-95.7), PPV=75.0% (CI=50.8-90.0), NPV=80.0% (CI=59.3-91.7%)), but was able to demonstrate the location of the lesion within the image. Conclusions: Two models appear to be useful tools for identifying and classifying suspicious areas on B-mode images of indeterminate breast lesions

    Feature-interaction detection based on feature-based specifications

    Get PDF
    A Gd3+-coordinated polymerizable analogue of the MRI contrast agent Gd-DOTA was used to prepare amphiphilic block copolymers, with hydrophilic blocks composed entirely of the polymerized contrast agent. The resulting amphiphilic block copolymers assemble into nanoparticles (NPs) of spherical- or fibril-shape, each demonstrating enhanced relaxivity over Gd-DOTA. As an initial examination of their behavior in vivo, intraperitoneal (IP) injection of NPs into live mice was performed, showing long IP residence times, observed by MRI. Extended residence times for particles of well-defined morphology may represent a valuable design paradigm for treatment or diagnosis of peritoneal malignances

    The Effect of Inhaled Gases on Ultrasound Contrast Agent Longevity In Vivo

    Get PDF
    Purpose: The purpose of this study is to investigate the effect of the inhaled gas used alongside isoflurane in the anesthetization of small animals on the time-intensity curves (TICs) acquired from ultrasound contrast agents—microbubbles. Procedures: TICs were recorded over the common iliac vein of 12 mice receiving Definity®. Animals were anesthetized with isoflurane, the ventilator was driven by medical air (MA), then in random order, the driving gas was changed for 3 min to: MA (control); pure oxygen (O2); O2+ perfluorohexane (PFH:O2); or O2+octafluoropropane (OFP:O2), the perfluorocarbon (PFC) in Definity, followed by a return to MA 3 min later. Results: The mean slope of signal decay was −0.47, −1.05, −1.16, and −1.42 video-intensity units/s for MA, OFP:O2, PFH:O2, and O2, respectively; MA had the slowest decay (pG0.0001). Both PFC mixtures had slower signal decay than O2, but only OFP:O2 was significant (pG0.01). When MA was used immediately following dosing, slope gradually decreased (p=0.032) and was two times slower by the fourth injection (p=0.012). Conclusions: Microbubble kinetics are closely associated with the driving gas for inhaled anesthesia. MA has the least effect and should be used when inhaled anesthesia is used. Furthermore, when animals are given multiple injections in the same session, microbubbles last longer with subsequent injections
    • …
    corecore